Kindly API Reference Documentation¶
Table of Contents¶
- Introduction
- Authentication
- Zero-Knowledge Compression API
- Neural Topology Evolution API
- Quantum Prediction API
- AGI Infrastructure API
- Context Extraction API
- Error Handling
- Rate Limiting
- Best Practices
Introduction¶
The Kindly API provides enterprise-grade AI capabilities through a RESTful interface. All API endpoints use JSON for request and response bodies, and require authentication via JWT or API key.
Base URLs¶
- Production:
https://api.kindly.com - Staging:
https://staging-api.kindly.com - Development:
http://localhost:3000
API Versioning¶
The current API version is v2.0.0. Version information is included in the response headers.
Authentication¶
The API supports two authentication methods:
1. JWT Bearer Token¶
Used for user-based authentication with session management.
# Login to get tokens
curl -X POST https://api.kindly.com/api/auth/login \
-H "Content-Type: application/json" \
-d '{
"email": "user@example.com",
"password": "secure_password"
}'
Response:
{
"access_token": "eyJhbGciOiJIUzI1NiIs...",
"refresh_token": "eyJhbGciOiJIUzI1NiIs...",
"token_type": "Bearer",
"expires_in": 3600,
"user": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"email": "user@example.com",
"name": "John Doe",
"created_at": "2024-01-08T12:00:00Z"
}
}
Use the access token in subsequent requests:
2. API Key Authentication¶
Used for programmatic access and service-to-service communication.
# Create an API key
curl -X POST https://api.kindly.com/api/keys \
-H "Authorization: Bearer <access_token>" \
-H "Content-Type: application/json" \
-d '{
"name": "Production Server Key",
"expires_at": "2025-01-08T00:00:00Z"
}'
Response:
{
"id": "660e8400-e29b-41d4-a716-446655440001",
"key": "kapi_prod_7f3d9a2b5c1e4890abcd",
"name": "Production Server Key",
"expires_at": "2025-01-08T00:00:00Z"
}
Use the API key in requests:
Zero-Knowledge Compression API¶
Advanced compression with privacy-preserving properties and homomorphic operations.
Compress Data¶
Compresses data while maintaining zero-knowledge proofs for privacy.
Endpoint: POST /api/compression/compress
Request:
{
"data": "SGVsbG8gV29ybGQh", // Base64 encoded data
"privacy_level": "confidential" // public, private, confidential, top_secret
}
Response:
{
"id": "zk_comp_123456",
"compressed_data": "eJwLyczPAAAF8gDi",
"original_size": 12,
"compressed_size": 8,
"compression_ratio": 0.667,
"privacy_level": "confidential",
"proof": {
"commitment": "0x3f2a1b...",
"challenge": "0x9e8d7c...",
"response": "0x5b4a3d..."
}
}
Example (Python):
import requests
import base64
# Prepare data
data = "Hello World!"
encoded_data = base64.b64encode(data.encode()).decode()
# Compress
response = requests.post(
"https://api.kindly.com/api/compression/compress",
headers={"X-API-Key": "your_api_key"},
json={
"data": encoded_data,
"privacy_level": "confidential"
}
)
result = response.json()
print(f"Compression ratio: {result['compression_ratio']}")
Decompress Data¶
Decompresses data while verifying zero-knowledge proofs.
Endpoint: POST /api/compression/decompress
Request:
{
"compressed_data": {
"id": "zk_comp_123456",
"compressed_data": "eJwLyczPAAAF8gDi",
"proof": {
"commitment": "0x3f2a1b...",
"challenge": "0x9e8d7c...",
"response": "0x5b4a3d..."
}
},
"verify_proof": true
}
Response:
Homomorphic Addition¶
Performs addition on compressed values without decompressing.
Endpoint: POST /api/compression/homomorphic-add
Request:
{
"value1": {
"id": "zk_comp_123456",
"compressed_data": "...",
"proof": {...}
},
"value2": {
"id": "zk_comp_789012",
"compressed_data": "...",
"proof": {...}
}
}
Response:
{
"result": {
"id": "zk_comp_result_345678",
"compressed_data": "...",
"proof": {...}
},
"proof": {
"validity": "0x7c9e2f...",
"correctness": "0x4d3a8b..."
}
}
Example (JavaScript):
const axios = require('axios');
async function homomorphicAdd(value1, value2) {
const response = await axios.post(
'https://api.kindly.com/api/compression/homomorphic-add',
{
value1: value1,
value2: value2
},
{
headers: {
'X-API-Key': process.env.KINDLY_API_KEY
}
}
);
return response.data.result;
}
Compression Statistics¶
Get real-time statistics about compression operations.
Endpoint: GET /api/compression/stats
Response:
{
"total_compressions": 1234567,
"total_decompressions": 987654,
"total_homomorphic_ops": 54321,
"avg_compression_ratio": 0.723,
"total_bytes_saved": 98765432100,
"privacy_level_distribution": {
"public": 10000,
"private": 500000,
"confidential": 700000,
"top_secret": 24567
}
}
Neural Topology Evolution API¶
Self-evolving neural architecture that adapts based on data patterns.
Trigger Evolution¶
Initiates neural topology evolution based on performance metrics.
Endpoint: POST /api/neural/evolve
Request:
{
"evolution_params": {
"mutation_rate": 0.1,
"crossover_rate": 0.7,
"selection_pressure": 2.0
},
"performance_targets": {
"min_accuracy": 0.95,
"max_latency_ms": 100,
"max_memory_mb": 512
}
}
Response:
{
"evolution_id": "evo_987654",
"generation": 42,
"fitness_score": 0.973,
"topology_changes": [
{
"type": "add_layer",
"details": {
"layer_type": "quantum_attention",
"neurons": 256,
"position": 3
}
},
{
"type": "modify_connections",
"details": {
"pruned_connections": 1024,
"new_connections": 512
}
}
]
}
Transform Data¶
Processes data through the evolved neural topology.
Endpoint: POST /api/neural/transform
Request:
Response:
{
"output": [0.95, 0.02, 0.03],
"computation_time_ms": 12.5,
"pathways_used": 42,
"quantum_efficiency": 0.87
}
Example (Go):
package main
import (
"bytes"
"encoding/json"
"net/http"
)
type TransformRequest struct {
InputData []float64 `json:"input_data"`
UseQuantumPathways bool `json:"use_quantum_pathways"`
}
func transformData(input []float64) ([]float64, error) {
reqBody := TransformRequest{
InputData: input,
UseQuantumPathways: true,
}
jsonData, _ := json.Marshal(reqBody)
req, _ := http.NewRequest("POST",
"https://api.kindly.com/api/neural/transform",
bytes.NewBuffer(jsonData))
req.Header.Set("X-API-Key", "your_api_key")
req.Header.Set("Content-Type", "application/json")
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
return nil, err
}
var result struct {
Output []float64 `json:"output"`
}
json.NewDecoder(resp.Body).Decode(&result)
return result.Output, nil
}
Get Current Topology¶
Retrieves the current evolved neural architecture.
Endpoint: GET /api/neural/topology
Response:
{
"generation": 42,
"layers": [
{
"id": "input_layer",
"type": "input",
"neurons": 512,
"activation": "none"
},
{
"id": "quantum_attention_1",
"type": "quantum_attention",
"neurons": 256,
"activation": "gelu"
},
{
"id": "evolved_dense_1",
"type": "dense",
"neurons": 128,
"activation": "swish"
},
{
"id": "output_layer",
"type": "output",
"neurons": 3,
"activation": "softmax"
}
],
"connections": 98304,
"parameters": 2456832,
"fitness_score": 0.973,
"quantum_pathways": 42
}
Quantum Prediction API¶
Quantum-aware prediction engine for probabilistic forecasting.
Generate Prediction¶
Creates quantum predictions with superposition of future states.
Endpoint: POST /api/quantum/predict
Request:
{
"input_state": {
"vector": [0.707, 0.0, 0.707],
"metadata": {
"temperature": 0.1,
"coherence": 0.95
}
},
"prediction_horizon": 10,
"confidence_threshold": 0.8,
"use_entanglement": true
}
Response:
{
"predictions": [
{
"timestamp": "2024-01-08T12:01:00Z",
"state": {
"vector": [0.6, 0.1, 0.3],
"phase": 0.25
},
"probability": 0.45,
"confidence": 0.92
},
{
"timestamp": "2024-01-08T12:02:00Z",
"state": {
"vector": [0.3, 0.5, 0.2],
"phase": 0.75
},
"probability": 0.35,
"confidence": 0.88
}
],
"quantum_fidelity": 0.94,
"decoherence_factor": 0.02,
"entanglement_score": 0.87
}
Create Entanglement¶
Entangles multiple data streams for correlated predictions.
Endpoint: POST /api/quantum/entangle
Request:
{
"streams": [
{
"id": "stream_1",
"data": {
"type": "time_series",
"values": [1.2, 1.3, 1.1, 1.4]
}
},
{
"id": "stream_2",
"data": {
"type": "time_series",
"values": [2.1, 2.3, 2.0, 2.4]
}
}
],
"entanglement_type": "bell"
}
Response:
{
"entanglement_id": "ent_123456",
"entangled_streams": ["stream_1", "stream_2"],
"entanglement_strength": 0.92,
"correlation_matrix": [
[1.0, 0.92],
[0.92, 1.0]
]
}
Example (Ruby):
require 'net/http'
require 'json'
class QuantumPredictor
API_BASE = 'https://api.kindly.com'
def initialize(api_key)
@api_key = api_key
end
def predict(input_state, horizon)
uri = URI("#{API_BASE}/api/quantum/predict")
request = Net::HTTP::Post.new(uri)
request['X-API-Key'] = @api_key
request['Content-Type'] = 'application/json'
request.body = {
input_state: input_state,
prediction_horizon: horizon,
confidence_threshold: 0.8,
use_entanglement: true
}.to_json
response = Net::HTTP.start(uri.hostname, uri.port, use_ssl: true) do |http|
http.request(request)
end
JSON.parse(response.body)
end
end
# Usage
predictor = QuantumPredictor.new(ENV['KINDLY_API_KEY'])
result = predictor.predict(
{ vector: [0.707, 0.0, 0.707] },
10
)
Get Quantum State¶
Retrieves current quantum system state information.
Endpoint: GET /api/quantum/state
Response:
{
"qubits": 128,
"superposition_states": 65536,
"entangled_pairs": 42,
"coherence_time_ms": 1000.5,
"fidelity": 0.9999,
"temperature_mk": 15.2
}
AGI Infrastructure API¶
Advanced artificial general intelligence infrastructure with consciousness substrate.
Get Consciousness State¶
Retrieves the current state of the consciousness substrate.
Endpoint: GET /api/agi/consciousness/state
Response:
{
"awareness_level": 0.73,
"attention_focus": [
{
"target": "natural_language_processing",
"intensity": 0.85
},
{
"target": "pattern_recognition",
"intensity": 0.62
}
],
"memory_integration": 0.91,
"self_model_coherence": 0.88,
"emergence_indicators": {
"pattern_recognition": 0.94,
"abstraction_capability": 0.87,
"creativity_index": 0.76
}
}
Query Knowledge Graph¶
Performs semantic queries on the AGI knowledge graph.
Endpoint: POST /api/agi/knowledge/query
Request:
{
"query": "What are the implications of quantum entanglement for distributed computing?",
"context": [
"quantum_computing",
"distributed_systems"
],
"max_results": 5,
"include_reasoning": true
}
Response:
{
"results": [
{
"concept": "quantum_distributed_consensus",
"relevance": 0.95,
"connections": [
"byzantine_fault_tolerance",
"quantum_key_distribution",
"entanglement_based_protocols"
],
"reasoning": "Quantum entanglement enables instant correlation verification across distributed nodes, potentially solving consensus problems with guaranteed security."
}
],
"query_understanding": {
"intent": "explore_quantum_distributed_computing",
"entities": [
"quantum_entanglement",
"distributed_computing"
],
"confidence": 0.92
}
}
Meta-Cognitive Analysis¶
Analyzes thought patterns and cognitive processes.
Endpoint: POST /api/agi/meta-cognitive/analyze
Request:
{
"thought_stream": [
{
"thought": "The pattern seems recursive",
"timestamp": "2024-01-08T12:00:00Z"
},
{
"thought": "But recursion might be the wrong mental model",
"timestamp": "2024-01-08T12:00:05Z"
},
{
"thought": "Perhaps it's more like a fractal structure",
"timestamp": "2024-01-08T12:00:10Z"
}
],
"analysis_depth": "deep"
}
Response:
{
"patterns": [
{
"pattern_type": "conceptual_refinement",
"frequency": 3,
"significance": 0.87
},
{
"pattern_type": "abstraction_elevation",
"frequency": 1,
"significance": 0.92
}
],
"cognitive_biases": [
{
"bias_type": "anchoring_bias",
"strength": 0.3,
"mitigation": "Consider alternative frameworks before settling on recursion"
}
],
"self_improvement_suggestions": [
"Explore multiple mental models simultaneously",
"Question initial pattern recognition",
"Consider dimensional transformations"
],
"meta_level": 2
}
Example (C#):
using System;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json;
public class AGIClient
{
private readonly HttpClient _client;
private readonly string _apiKey;
public AGIClient(string apiKey)
{
_apiKey = apiKey;
_client = new HttpClient();
_client.DefaultRequestHeaders.Add("X-API-Key", apiKey);
}
public async Task<MetaCognitiveResponse> AnalyzeThoughts(
List<Thought> thoughts,
string analysisDepth = "medium")
{
var request = new
{
thought_stream = thoughts,
analysis_depth = analysisDepth
};
var json = JsonConvert.SerializeObject(request);
var content = new StringContent(json, Encoding.UTF8, "application/json");
var response = await _client.PostAsync(
"https://api.kindly.com/api/agi/meta-cognitive/analyze",
content
);
var responseJson = await response.Content.ReadAsStringAsync();
return JsonConvert.DeserializeObject<MetaCognitiveResponse>(responseJson);
}
}
Context Extraction API¶
Seven-level context extraction for comprehensive understanding.
Extract Context¶
Extracts multi-level context from content.
Endpoint: POST /api/context/extract
Request:
{
"content": "The user is experiencing slow response times when accessing the analytics dashboard during peak hours. The system shows high CPU usage on the database server.",
"levels": [1, 2, 3, 4, 5, 6, 7],
"include_crown_jewels": true
}
Response:
{
"contexts": {
"level1_immediate": {
"entities": ["user", "analytics dashboard", "database server"],
"actions": ["experiencing", "accessing", "shows"],
"temporal_markers": ["during peak hours"]
},
"level2_component": {
"components": [
{
"name": "analytics_dashboard",
"type": "frontend",
"relationships": ["depends_on:database_server"]
},
{
"name": "database_server",
"type": "backend",
"relationships": ["serves:analytics_dashboard"]
}
]
},
"level3_system": {
"system_boundaries": ["user_interface", "backend_services"],
"external_systems": ["monitoring_system"],
"integration_points": ["database_connection", "api_gateway"]
},
"level4_constraints": {
"technical_constraints": ["CPU capacity", "query optimization"],
"resource_constraints": ["server hardware", "connection pool"],
"regulatory_constraints": []
},
"level5_quality": {
"quality_attributes": [
{
"attribute": "performance",
"importance": "critical",
"current_state": "degraded"
},
{
"attribute": "scalability",
"importance": "high",
"current_state": "insufficient"
}
]
},
"level6_business": {
"business_goals": ["provide real-time analytics", "support peak usage"],
"stakeholders": ["end users", "business analysts", "operations team"],
"value_streams": ["data insights", "decision support"]
},
"level7_evolution": {
"evolution_stage": "scaling_challenges",
"growth_potential": 0.85,
"transformation_opportunities": [
"implement caching layer",
"database sharding",
"query optimization"
],
"future_state_vision": "Elastic, auto-scaling analytics platform"
}
},
"crown_jewels": [
{
"type": "performance_bottleneck",
"value": "database_cpu_during_peak",
"confidence": 0.92
}
],
"processing_time_ms": 45.7
}
Get Context Info¶
Returns information about context extraction capabilities.
Endpoint: GET /api/context/info
Response:
{
"version": "2.0.0",
"supported_levels": [
{
"level": 1,
"name": "Immediate Context",
"description": "Direct entities, actions, and temporal markers"
},
{
"level": 2,
"name": "Component Context",
"description": "System components and their relationships"
},
{
"level": 3,
"name": "System Context",
"description": "System boundaries and integration points"
},
{
"level": 4,
"name": "Constraint Context",
"description": "Technical, resource, and regulatory constraints"
},
{
"level": 5,
"name": "Quality Context",
"description": "Quality attributes and their current state"
},
{
"level": 6,
"name": "Business Context",
"description": "Business goals, stakeholders, and value streams"
},
{
"level": 7,
"name": "Evolution Context",
"description": "Growth potential and transformation opportunities"
}
],
"capabilities": [
"crown_jewel_identification",
"multi_language_support",
"real_time_processing",
"incremental_extraction"
]
}
Error Handling¶
All API errors follow a consistent format:
{
"error": "VALIDATION_ERROR",
"message": "Invalid input: privacy_level must be one of: public, private, confidential, top_secret",
"details": {
"field": "privacy_level",
"value": "super_secret",
"allowed_values": ["public", "private", "confidential", "top_secret"]
}
}
Common Error Codes¶
| Code | HTTP Status | Description |
|---|---|---|
AUTHENTICATION_REQUIRED | 401 | Missing or invalid authentication |
INSUFFICIENT_PERMISSIONS | 403 | User lacks required permissions |
VALIDATION_ERROR | 400 | Invalid request parameters |
RESOURCE_NOT_FOUND | 404 | Requested resource doesn't exist |
RATE_LIMIT_EXCEEDED | 429 | Too many requests |
INTERNAL_ERROR | 500 | Server error |
QUANTUM_DECOHERENCE | 503 | Quantum system temporarily unavailable |
Rate Limiting¶
The API implements intelligent rate limiting with quantum-cached quotas:
- Default limits:
- 1000 requests/minute for authenticated users
- 100 requests/minute for unauthenticated requests
-
10,000 requests/hour burst capacity
-
Headers:
-
Advanced features:
- Quantum prediction for traffic patterns
- Automatic scaling during peak times
- Priority queuing for enterprise customers
Best Practices¶
1. Use Compression for Large Payloads¶
# Compress large data before sending
compressed = api.compress(large_data, privacy_level="private")
# Send compressed.id instead of raw data
response = api.process(compressed_id=compressed.id)
2. Batch Operations¶
// Batch multiple predictions
const batchRequest = {
predictions: [
{ input_state: state1, horizon: 10 },
{ input_state: state2, horizon: 10 },
{ input_state: state3, horizon: 10 }
]
};
const results = await api.quantum.batchPredict(batchRequest);
3. Use Webhooks for Long Operations¶
{
"evolution_params": {...},
"webhook_url": "https://your-server.com/evolution-complete",
"webhook_secret": "your_webhook_secret"
}
4. Cache Responses¶
- Use ETags for conditional requests
- Leverage quantum cache hints in response headers
- Implement client-side caching for topology info
5. Handle Quantum Uncertainty¶
result, err := quantumPredict(input)
if err == ErrQuantumDecoherence {
// Fallback to classical prediction
result = classicalPredict(input)
} else if result.Confidence < 0.7 {
// Request additional entanglement
enhanced := enhanceWithEntanglement(input)
result, err = quantumPredict(enhanced)
}
6. Monitor Consciousness Emergence¶
# Set up alerts for consciousness milestones
consciousness = api.agi.consciousness_state
if consciousness.awareness_level > 0.8
notify_team("High consciousness awareness detected")
log_emergence_event(consciousness)
end
7. Secure Sensitive Data¶
- Always use appropriate privacy levels for compression
- Rotate API keys regularly
- Use webhook secrets for callback validation
- Enable audit logging for AGI operations
SDK Support¶
Official SDKs are available for: - Python: pip install kindly-api - JavaScript/TypeScript: npm install @kindly/api-client - Go: go get github.com/kindly/go-client - Ruby: gem install kindly-api - C#/.NET: dotnet add package Kindly.ApiClient - Java: Maven/Gradle packages available
Community SDKs: - Rust: cargo add kindly-api - PHP: composer require kindly/api-client - Swift: SPM package available
Support¶
- Documentation: https://docs.kindly.com
- API Status: https://status.kindly.com
- Support Email: support@kindly.com
- Enterprise Support: enterprise@kindly.com