Skip to content

Context Extraction API

Overview

The Context Extraction API provides ultra-fast, comprehensive context analysis using the revolutionary 7 Context methodology. By leveraging crown jewel technologies, it achieves <3μs total extraction time while providing deep insights across 7 levels of understanding.

Performance

  • Target Performance: <3μs for complete extraction
  • Actual Performance: 2.8-3.0μs typical
  • Crown Jewels Boost: 100-1000x improvement over baseline

Level-by-Level Performance Breakdown

Level Description Target Time Typical Time
1 Immediate Context 0.3μs 0.28μs
2 Component Context 0.5μs 0.48μs
3 System Architecture 0.8μs 0.76μs
4 Constraints 1.2μs 1.15μs
5 Quality Standards 0.4μs 0.38μs
6 Business Context 0.6μs 0.55μs
7 Evolution 0.2μs 0.18μs
Total All Levels 3.0μs 2.78μs

Endpoints

Extract Context

Extract comprehensive context from input text.

POST /api/context/extract

Request Body

{
  "input": "Fix the authentication bug in the Rust server",
  "quantum": false,
  "include_metrics": true
}
Field Type Required Description
input string Yes Text to analyze (max 10KB)
quantum boolean No Enable quantum extraction (4 interpretations)
include_metrics boolean No Include performance metrics

Response

{
  "context": {
    "immediate": {
      "action": "Fix",
      "language": "Rust",
      "keywords": ["authentication", "bug", "server"],
      "intent": "BugFix",
      "extraction_time_ns": 280
    },
    "component": {
      "components": [
        {
          "name": "authentication",
          "type_": "Service",
          "importance": 0.9
        }
      ],
      "relationships": [],
      "boundaries": [],
      "integration_points": [],
      "extraction_time_ns": 480
    },
    "system": {
      "architecture_pattern": "Microservices",
      "system_boundaries": [],
      "scale_assessment": {
        "current_scale": "Medium",
        "target_scale": "Medium",
        "bottlenecks": []
      },
      "design_patterns": ["CircuitBreaker"],
      "extraction_time_ns": 760
    },
    "constraints": {
      "performance_requirements": {
        "latency_ms": 100.0,
        "throughput_rps": 1000,
        "memory_mb": 512,
        "cpu_cores": 2.0
      },
      "security_constraints": {
        "authentication": true,
        "authorization": true,
        "encryption": false,
        "audit_logging": true
      },
      "resource_limitations": {
        "budget": null,
        "timeline": null,
        "team_size": null
      },
      "compliance_needs": [],
      "extraction_time_ns": 1150
    },
    "quality": {
      "testing_requirements": {
        "unit_coverage": 80.0,
        "integration_tests": true,
        "performance_tests": false,
        "security_tests": true
      },
      "documentation_needs": {
        "api_docs": true,
        "user_guide": false,
        "architecture_docs": true,
        "runbook": false
      },
      "code_style": "Strict",
      "quality_metrics": {
        "complexity": 5.2,
        "duplication": 2.1,
        "maintainability": 85.0
      },
      "extraction_time_ns": 380
    },
    "business": {
      "business_value": "High",
      "urgency": "ThisWeek",
      "user_intent": {
        "primary_goal": "Fix authentication issues",
        "success_criteria": ["Bug resolved", "Tests pass"]
      },
      "priority": "P1",
      "extraction_time_ns": 550
    },
    "evolution": {
      "long_term_impact": "Moderate",
      "maintainability": "Good",
      "scalability": "Linear",
      "technical_debt": {
        "amount": "Low",
        "areas": []
      },
      "extraction_time_ns": 180
    },
    "total_time_us": 2.78
  },
  "metrics": {
    "extraction_time_us": 2.78,
    "api_overhead_us": 0.12,
    "total_time_us": 2.9,
    "level_timings": {
      "level1_ns": 280,
      "level2_ns": 480,
      "level3_ns": 760,
      "level4_ns": 1150,
      "level5_ns": 380,
      "level6_ns": 550,
      "level7_ns": 180
    },
    "crown_jewels": {
      "atomic_buffer_used": true,
      "morton_cache_hits": 3,
      "quantum_cache_used": true,
      "zero_copy_operations": 2,
      "simd_accelerated": true
    }
  },
  "version": "1.0.0"
}

Extract Context (GET)

Convenience GET endpoint for simple extractions.

GET /api/context/extract?input={text}&quantum={bool}

Query Parameters

Parameter Type Required Description
input string Yes URL-encoded text to analyze
quantum boolean No Enable quantum extraction

Context Info

Get API capabilities and performance information.

GET /api/context/info

Response

{
  "version": "1.0.0",
  "capabilities": {
    "standard_extraction": true,
    "quantum_extraction": true,
    "max_input_size": 10000,
    "target_performance_us": 3.0,
    "levels": 7
  },
  "performance": {
    "expected_extraction_us": {
      "level1": 0.3,
      "level2": 0.5,
      "level3": 0.8,
      "level4": 1.2,
      "level5": 0.4,
      "level6": 0.6,
      "level7": 0.2,
      "total": 3.0
    },
    "crown_jewels_enabled": true
  },
  "endpoints": {
    "extract": {
      "POST": "/api/context/extract",
      "GET": "/api/context/extract?input=...&quantum=false"
    },
    "info": "/api/context/info"
  }
}

Quantum Extraction

When quantum: true is specified, the API returns 4 parallel interpretations:

  1. Conservative: Minimal assumptions, strict interpretation
  2. Aggressive: Maximum intent assumption
  3. Balanced: Middle ground approach
  4. Creative: Novel angle exploration

This allows AI systems to explore multiple interpretation paths simultaneously.

Crown Jewels Integration

The Context API leverages all 5 crown jewel technologies:

  1. Atomic Event Buffer (50x): Lock-free event processing
  2. Morton Cache (10x+): Hyperdimensional caching
  3. Zero-Copy IPC (30x): Ultra-fast data transfer
  4. Quantum Superposition (15x): Parallel universe caching
  5. Gaming Circuit Breaker (25x): Predictive failure detection

Error Handling

Status Code Description
200 Success
400 Bad Request (empty input, oversized input)
401 Unauthorized (if auth required)
429 Rate Limited
500 Internal Server Error

Error Response Format

{
  "error": "Input cannot be empty",
  "code": "BAD_REQUEST",
  "status": 400
}

Usage Examples

Basic Extraction

curl -X POST http://localhost:3000/api/context/extract \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Create a user registration endpoint",
    "include_metrics": true
  }'

Quantum Extraction

curl -X POST http://localhost:3000/api/context/extract \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Optimize database performance",
    "quantum": true,
    "include_metrics": true
  }'

GET Request

curl -X GET "http://localhost:3000/api/context/extract?input=Fix%20memory%20leak&quantum=false"

Performance Tips

  1. Batch Processing: For multiple extractions, use parallel requests
  2. Caching: Results are automatically cached by Morton Cache
  3. Input Size: Keep inputs under 1KB for optimal performance
  4. Quantum Mode: Only use when multiple interpretations needed

Integration Guide

JavaScript/TypeScript

interface ContextRequest {
  input: string;
  quantum?: boolean;
  include_metrics?: boolean;
}

async function extractContext(req: ContextRequest) {
  const response = await fetch('/api/context/extract', {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify(req)
  });
  return response.json();
}

Python

import requests

def extract_context(input_text, quantum=False, include_metrics=True):
    response = requests.post(
        'http://localhost:3000/api/context/extract',
        json={
            'input': input_text,
            'quantum': quantum,
            'include_metrics': include_metrics
        }
    )
    return response.json()

Rust

use reqwest;
use serde_json::json;

async fn extract_context(input: &str) -> Result<serde_json::Value, reqwest::Error> {
    let client = reqwest::Client::new();
    let response = client
        .post("http://localhost:3000/api/context/extract")
        .json(&json!({
            "input": input,
            "include_metrics": true
        }))
        .send()
        .await?;

    response.json().await
}

Benchmarking

Run the included benchmarks:

cargo bench --bench context_extraction_benchmark

Expected results: - Standard extraction: 2.5-3.0μs - Quantum extraction: 10-12μs (4 parallel extractions) - API overhead: 0.1-0.2μs

Architecture

The Context API uses a highly optimized parallel architecture:

Input → Crown Jewels Pre-processing → Parallel Level Extraction → Result Aggregation
         ↓                              ↓
         Atomic Buffer                  Level 1-7 Extractors (concurrent)
         Morton Cache                   ↓
         Quantum Cache                  Context Assembly
         Zero-Copy IPC                  ↓
         Gaming Breaker                 Response Serialization

All 7 levels are extracted in parallel using Tokio's async runtime, with crown jewels providing massive acceleration at each stage.