Kindly API Usage Guides¶
Table of Contents¶
- Quick Start Guide
- Language-Specific Examples
- Common Use Cases
- Advanced Patterns
- Performance Optimization
- Security Best Practices
Quick Start Guide¶
1. Get Your API Credentials¶
First, sign up at https://kindly.com/signup and create an API key:
# After logging in, create an API key
curl -X POST https://api.kindly.com/api/keys \
-H "Authorization: Bearer YOUR_ACCESS_TOKEN" \
-H "Content-Type: application/json" \
-d '{"name": "My Application"}'
2. Make Your First Request¶
# Test your API key with a health check
curl -X GET https://api.kindly.com/api/health \
-H "X-API-Key: YOUR_API_KEY"
3. Try Zero-Knowledge Compression¶
# Compress some data
curl -X POST https://api.kindly.com/api/compression/compress \
-H "X-API-Key: YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"data": "SGVsbG8gS2luZGx5IEFQSSE=",
"privacy_level": "private"
}'
Language-Specific Examples¶
Python¶
Installation¶
Complete Example¶
import base64
import json
from typing import Dict, Any
import requests
class KindlyAPIClient:
def __init__(self, api_key: str, base_url: str = "https://api.kindly.com"):
self.api_key = api_key
self.base_url = base_url
self.headers = {
"X-API-Key": api_key,
"Content-Type": "application/json"
}
def compress_data(self, data: bytes, privacy_level: str = "private") -> Dict[str, Any]:
"""Compress data with zero-knowledge proof."""
encoded_data = base64.b64encode(data).decode('utf-8')
response = requests.post(
f"{self.base_url}/api/compression/compress",
headers=self.headers,
json={
"data": encoded_data,
"privacy_level": privacy_level
}
)
response.raise_for_status()
return response.json()
def decompress_data(self, compressed_data: Dict[str, Any]) -> bytes:
"""Decompress data and verify proof."""
response = requests.post(
f"{self.base_url}/api/compression/decompress",
headers=self.headers,
json={
"compressed_data": compressed_data,
"verify_proof": True
}
)
response.raise_for_status()
result = response.json()
return base64.b64decode(result["data"])
def extract_context(self, content: str, levels: list = None) -> Dict[str, Any]:
"""Extract multi-level context from content."""
if levels is None:
levels = list(range(1, 8)) # All 7 levels
response = requests.post(
f"{self.base_url}/api/context/extract",
headers=self.headers,
json={
"content": content,
"levels": levels,
"include_crown_jewels": True
}
)
response.raise_for_status()
return response.json()
def quantum_predict(self, input_state: Dict[str, Any], horizon: int) -> Dict[str, Any]:
"""Generate quantum predictions."""
response = requests.post(
f"{self.base_url}/api/quantum/predict",
headers=self.headers,
json={
"input_state": input_state,
"prediction_horizon": horizon,
"confidence_threshold": 0.8,
"use_entanglement": True
}
)
response.raise_for_status()
return response.json()
# Usage Example
def main():
client = KindlyAPIClient("your_api_key_here")
# Compress sensitive data
sensitive_data = b"This is confidential information"
compressed = client.compress_data(sensitive_data, "confidential")
print(f"Compression ratio: {compressed['compression_ratio']:.2%}")
# Extract context
text = "The server is experiencing high latency during peak hours"
context = client.extract_context(text)
print(f"Immediate entities: {context['contexts']['level1_immediate']['entities']}")
# Quantum prediction
quantum_state = {
"vector": [0.707, 0.0, 0.707],
"metadata": {"temperature": 0.1}
}
predictions = client.quantum_predict(quantum_state, horizon=5)
print(f"Top prediction confidence: {predictions['predictions'][0]['confidence']}")
if __name__ == "__main__":
main()
JavaScript/TypeScript¶
Installation¶
Complete Example¶
import axios, { AxiosInstance } from 'axios';
interface CompressedData {
id: string;
compressed_data: string;
proof: Record<string, string>;
}
interface CompressionResponse {
id: string;
compressed_data: string;
original_size: number;
compressed_size: number;
compression_ratio: number;
privacy_level: string;
proof: Record<string, string>;
}
interface QuantumPrediction {
timestamp: string;
state: {
vector: number[];
phase: number;
};
probability: number;
confidence: number;
}
class KindlyAPIClient {
private client: AxiosInstance;
constructor(apiKey: string, baseURL: string = 'https://api.kindly.com') {
this.client = axios.create({
baseURL,
headers: {
'X-API-Key': apiKey,
'Content-Type': 'application/json',
},
});
// Add response interceptor for error handling
this.client.interceptors.response.use(
response => response,
error => {
if (error.response?.status === 429) {
console.error('Rate limit exceeded. Retry after:',
error.response.headers['x-ratelimit-reset']);
}
return Promise.reject(error);
}
);
}
async compressData(
data: string,
privacyLevel: 'public' | 'private' | 'confidential' | 'top_secret' = 'private'
): Promise<CompressionResponse> {
const response = await this.client.post<CompressionResponse>(
'/api/compression/compress',
{
data: Buffer.from(data).toString('base64'),
privacy_level: privacyLevel,
}
);
return response.data;
}
async homomorphicAdd(
value1: CompressedData,
value2: CompressedData
): Promise<{ result: CompressedData; proof: Record<string, string> }> {
const response = await this.client.post('/api/compression/homomorphic-add', {
value1,
value2,
});
return response.data;
}
async neuralTransform(
inputData: number[],
useQuantumPathways: boolean = true
): Promise<{
output: number[];
computation_time_ms: number;
pathways_used: number;
quantum_efficiency: number;
}> {
const response = await this.client.post('/api/neural/transform', {
input_data: inputData,
use_quantum_pathways: useQuantumPathways,
});
return response.data;
}
async quantumPredict(
inputState: { vector: number[]; metadata?: Record<string, any> },
horizon: number
): Promise<{
predictions: QuantumPrediction[];
quantum_fidelity: number;
decoherence_factor: number;
entanglement_score: number;
}> {
const response = await this.client.post('/api/quantum/predict', {
input_state: inputState,
prediction_horizon: horizon,
confidence_threshold: 0.8,
use_entanglement: true,
});
return response.data;
}
async queryKnowledge(
query: string,
context: string[] = []
): Promise<any> {
const response = await this.client.post('/api/agi/knowledge/query', {
query,
context,
max_results: 10,
include_reasoning: true,
});
return response.data;
}
}
// Usage Example
async function main() {
const client = new KindlyAPIClient(process.env.KINDLY_API_KEY!);
try {
// Compress data
const compressed = await client.compressData(
'Sensitive financial data',
'confidential'
);
console.log(`Saved ${100 - compressed.compression_ratio * 100}% space`);
// Neural transformation
const neuralResult = await client.neuralTransform([0.1, 0.2, 0.3, 0.4, 0.5]);
console.log('Neural output:', neuralResult.output);
// Quantum prediction
const predictions = await client.quantumPredict(
{ vector: [0.707, 0.0, 0.707] },
10
);
console.log(`Generated ${predictions.predictions.length} quantum predictions`);
// Knowledge query
const knowledge = await client.queryKnowledge(
'How does quantum entanglement affect distributed systems?',
['quantum_computing', 'distributed_systems']
);
console.log('Top result:', knowledge.results[0].concept);
} catch (error) {
console.error('API Error:', error);
}
}
main();
Go¶
Installation¶
Complete Example¶
package main
import (
"bytes"
"context"
"encoding/base64"
"encoding/json"
"fmt"
"net/http"
"time"
)
type KindlyClient struct {
apiKey string
baseURL string
httpClient *http.Client
}
type CompressionRequest struct {
Data string `json:"data"`
PrivacyLevel string `json:"privacy_level"`
}
type CompressionResponse struct {
ID string `json:"id"`
CompressedData string `json:"compressed_data"`
OriginalSize int `json:"original_size"`
CompressedSize int `json:"compressed_size"`
CompressionRatio float64 `json:"compression_ratio"`
PrivacyLevel string `json:"privacy_level"`
Proof map[string]interface{} `json:"proof"`
}
type ContextExtractRequest struct {
Content string `json:"content"`
Levels []int `json:"levels"`
IncludeCrownJewels bool `json:"include_crown_jewels"`
}
type QuantumPredictRequest struct {
InputState struct {
Vector []float64 `json:"vector"`
Metadata map[string]float64 `json:"metadata,omitempty"`
} `json:"input_state"`
PredictionHorizon int `json:"prediction_horizon"`
ConfidenceThreshold float64 `json:"confidence_threshold"`
UseEntanglement bool `json:"use_entanglement"`
}
func NewKindlyClient(apiKey string) *KindlyClient {
return &KindlyClient{
apiKey: apiKey,
baseURL: "https://api.kindly.com",
httpClient: &http.Client{
Timeout: 30 * time.Second,
},
}
}
func (c *KindlyClient) doRequest(ctx context.Context, method, path string, body interface{}, result interface{}) error {
var reqBody []byte
var err error
if body != nil {
reqBody, err = json.Marshal(body)
if err != nil {
return fmt.Errorf("marshal request: %w", err)
}
}
req, err := http.NewRequestWithContext(ctx, method, c.baseURL+path, bytes.NewBuffer(reqBody))
if err != nil {
return fmt.Errorf("create request: %w", err)
}
req.Header.Set("X-API-Key", c.apiKey)
req.Header.Set("Content-Type", "application/json")
resp, err := c.httpClient.Do(req)
if err != nil {
return fmt.Errorf("do request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("API error: status %d", resp.StatusCode)
}
if result != nil {
if err := json.NewDecoder(resp.Body).Decode(result); err != nil {
return fmt.Errorf("decode response: %w", err)
}
}
return nil
}
func (c *KindlyClient) CompressData(ctx context.Context, data []byte, privacyLevel string) (*CompressionResponse, error) {
req := CompressionRequest{
Data: base64.StdEncoding.EncodeToString(data),
PrivacyLevel: privacyLevel,
}
var resp CompressionResponse
err := c.doRequest(ctx, "POST", "/api/compression/compress", req, &resp)
if err != nil {
return nil, err
}
return &resp, nil
}
func (c *KindlyClient) ExtractContext(ctx context.Context, content string, levels []int) (map[string]interface{}, error) {
if len(levels) == 0 {
levels = []int{1, 2, 3, 4, 5, 6, 7}
}
req := ContextExtractRequest{
Content: content,
Levels: levels,
IncludeCrownJewels: true,
}
var resp map[string]interface{}
err := c.doRequest(ctx, "POST", "/api/context/extract", req, &resp)
if err != nil {
return nil, err
}
return resp, nil
}
func (c *KindlyClient) QuantumPredict(ctx context.Context, inputVector []float64, horizon int) (map[string]interface{}, error) {
req := QuantumPredictRequest{
PredictionHorizon: horizon,
ConfidenceThreshold: 0.8,
UseEntanglement: true,
}
req.InputState.Vector = inputVector
req.InputState.Metadata = map[string]float64{"temperature": 0.1}
var resp map[string]interface{}
err := c.doRequest(ctx, "POST", "/api/quantum/predict", req, &resp)
if err != nil {
return nil, err
}
return resp, nil
}
// Concurrent operations example
func (c *KindlyClient) BatchCompress(ctx context.Context, items [][]byte, privacyLevel string) ([]*CompressionResponse, error) {
results := make([]*CompressionResponse, len(items))
errChan := make(chan error, len(items))
for i, data := range items {
go func(idx int, d []byte) {
resp, err := c.CompressData(ctx, d, privacyLevel)
if err != nil {
errChan <- err
return
}
results[idx] = resp
errChan <- nil
}(i, data)
}
// Wait for all goroutines
for range items {
if err := <-errChan; err != nil {
return nil, err
}
}
return results, nil
}
func main() {
client := NewKindlyClient("your_api_key_here")
ctx := context.Background()
// Example 1: Compress data
data := []byte("Confidential business data")
compressed, err := client.CompressData(ctx, data, "confidential")
if err != nil {
panic(err)
}
fmt.Printf("Compression saved %.1f%% space\n", (1-compressed.CompressionRatio)*100)
// Example 2: Extract context
content := "The payment processing system is failing during checkout"
context, err := client.ExtractContext(ctx, content, []int{1, 2, 3})
if err != nil {
panic(err)
}
fmt.Printf("Context extracted: %v\n", context["contexts"])
// Example 3: Quantum prediction
predictions, err := client.QuantumPredict(ctx, []float64{0.707, 0.0, 0.707}, 5)
if err != nil {
panic(err)
}
fmt.Printf("Quantum predictions: %v\n", predictions["predictions"])
// Example 4: Batch compression (concurrent)
items := [][]byte{
[]byte("Data 1"),
[]byte("Data 2"),
[]byte("Data 3"),
}
batchResults, err := client.BatchCompress(ctx, items, "private")
if err != nil {
panic(err)
}
fmt.Printf("Compressed %d items\n", len(batchResults))
}
Ruby¶
Installation¶
Complete Example¶
require 'httparty'
require 'base64'
require 'json'
class KindlyAPIClient
include HTTParty
base_uri 'https://api.kindly.com'
def initialize(api_key)
@api_key = api_key
@headers = {
'X-API-Key' => api_key,
'Content-Type' => 'application/json'
}
end
# Zero-Knowledge Compression
def compress_data(data, privacy_level = 'private')
encoded_data = Base64.encode64(data).strip
response = self.class.post('/api/compression/compress',
headers: @headers,
body: {
data: encoded_data,
privacy_level: privacy_level
}.to_json
)
handle_response(response)
end
def decompress_data(compressed_data, verify_proof = true)
response = self.class.post('/api/compression/decompress',
headers: @headers,
body: {
compressed_data: compressed_data,
verify_proof: verify_proof
}.to_json
)
result = handle_response(response)
Base64.decode64(result['data'])
end
# Context Extraction
def extract_context(content, levels = nil)
levels ||= (1..7).to_a
response = self.class.post('/api/context/extract',
headers: @headers,
body: {
content: content,
levels: levels,
include_crown_jewels: true
}.to_json
)
handle_response(response)
end
# Neural Topology
def evolve_neural_topology(evolution_params = {}, performance_targets = {})
default_params = {
mutation_rate: 0.1,
crossover_rate: 0.7,
selection_pressure: 2.0
}
response = self.class.post('/api/neural/evolve',
headers: @headers,
body: {
evolution_params: default_params.merge(evolution_params),
performance_targets: performance_targets
}.to_json
)
handle_response(response)
end
# Quantum Prediction
def quantum_predict(input_state, horizon, options = {})
request_body = {
input_state: input_state,
prediction_horizon: horizon,
confidence_threshold: options[:confidence_threshold] || 0.8,
use_entanglement: options[:use_entanglement] != false
}
response = self.class.post('/api/quantum/predict',
headers: @headers,
body: request_body.to_json
)
handle_response(response)
end
# AGI Knowledge Query
def query_knowledge(query, context = [], max_results = 10)
response = self.class.post('/api/agi/knowledge/query',
headers: @headers,
body: {
query: query,
context: context,
max_results: max_results,
include_reasoning: true
}.to_json
)
handle_response(response)
end
# Analytics
def get_analytics_overview(start_date = nil, end_date = nil)
params = {}
params[:start_date] = start_date if start_date
params[:end_date] = end_date if end_date
response = self.class.get('/api/analytics/overview',
headers: @headers,
query: params
)
handle_response(response)
end
private
def handle_response(response)
case response.code
when 200, 201
response.parsed_response
when 429
reset_time = response.headers['x-ratelimit-reset']
raise "Rate limit exceeded. Reset at: #{Time.at(reset_time.to_i)}"
else
error = response.parsed_response
raise "API Error: #{error['message']} (#{error['error']})"
end
end
end
# Usage Examples
if __FILE__ == $0
client = KindlyAPIClient.new(ENV['KINDLY_API_KEY'])
begin
# Example 1: Compress sensitive data
puts "=== Zero-Knowledge Compression ==="
sensitive_data = "Credit card: 4111-1111-1111-1111"
compressed = client.compress_data(sensitive_data, 'top_secret')
puts "Compression ratio: #{(compressed['compression_ratio'] * 100).round(1)}%"
puts "Space saved: #{100 - (compressed['compression_ratio'] * 100).round(1)}%"
# Example 2: Extract multi-level context
puts "\n=== Context Extraction ==="
text = "Customer reported slow checkout process on mobile app during Black Friday sale"
context = client.extract_context(text)
immediate = context['contexts']['level1_immediate']
puts "Entities found: #{immediate['entities'].join(', ')}"
puts "Temporal markers: #{immediate['temporal_markers'].join(', ')}"
# Example 3: Quantum prediction
puts "\n=== Quantum Prediction ==="
quantum_state = {
vector: [0.707, 0.0, 0.707],
metadata: { temperature: 0.1 }
}
predictions = client.quantum_predict(quantum_state, 5)
puts "Quantum fidelity: #{predictions['quantum_fidelity']}"
puts "Number of predictions: #{predictions['predictions'].length}"
puts "Top prediction confidence: #{predictions['predictions'][0]['confidence']}"
# Example 4: Knowledge query
puts "\n=== AGI Knowledge Query ==="
knowledge = client.query_knowledge(
"What are the best practices for microservices architecture?",
["software_architecture", "distributed_systems"]
)
top_result = knowledge['results'][0]
puts "Top concept: #{top_result['concept']}"
puts "Relevance: #{(top_result['relevance'] * 100).round(1)}%"
puts "Reasoning: #{top_result['reasoning']}"
# Example 5: Analytics
puts "\n=== Analytics Overview ==="
analytics = client.get_analytics_overview
summary = analytics['summary']
puts "Total requests: #{summary['total_requests']}"
puts "Compression savings: #{summary['compression_savings_gb']} GB"
puts "Quantum predictions: #{summary['quantum_predictions_made']}"
rescue => e
puts "Error: #{e.message}"
end
end
C#/.NET¶
Installation¶
Complete Example¶
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Newtonsoft.Json;
using RestSharp;
namespace KindlyAPI
{
public class KindlyApiClient
{
private readonly string _apiKey;
private readonly RestClient _client;
public KindlyApiClient(string apiKey, string baseUrl = "https://api.kindly.com")
{
_apiKey = apiKey;
_client = new RestClient(baseUrl);
}
private RestRequest CreateRequest(string resource, Method method)
{
var request = new RestRequest(resource, method);
request.AddHeader("X-API-Key", _apiKey);
request.AddHeader("Content-Type", "application/json");
return request;
}
// Zero-Knowledge Compression
public async Task<CompressionResponse> CompressDataAsync(byte[] data, string privacyLevel = "private")
{
var request = CreateRequest("/api/compression/compress", Method.Post);
var encodedData = Convert.ToBase64String(data);
request.AddJsonBody(new
{
data = encodedData,
privacy_level = privacyLevel
});
var response = await _client.ExecuteAsync<CompressionResponse>(request);
if (!response.IsSuccessful)
throw new Exception($"API Error: {response.ErrorMessage}");
return response.Data;
}
public async Task<byte[]> DecompressDataAsync(CompressedData compressedData)
{
var request = CreateRequest("/api/compression/decompress", Method.Post);
request.AddJsonBody(new
{
compressed_data = compressedData,
verify_proof = true
});
var response = await _client.ExecuteAsync<DecompressionResponse>(request);
if (!response.IsSuccessful)
throw new Exception($"API Error: {response.ErrorMessage}");
return Convert.FromBase64String(response.Data.Data);
}
// Context Extraction
public async Task<ContextExtractionResponse> ExtractContextAsync(string content, int[] levels = null)
{
var request = CreateRequest("/api/context/extract", Method.Post);
levels ??= new[] { 1, 2, 3, 4, 5, 6, 7 };
request.AddJsonBody(new
{
content = content,
levels = levels,
include_crown_jewels = true
});
var response = await _client.ExecuteAsync<ContextExtractionResponse>(request);
if (!response.IsSuccessful)
throw new Exception($"API Error: {response.ErrorMessage}");
return response.Data;
}
// Neural Topology Evolution
public async Task<NeuralEvolutionResponse> EvolveNeuralTopologyAsync(
EvolutionParams evolutionParams = null,
PerformanceTargets performanceTargets = null)
{
var request = CreateRequest("/api/neural/evolve", Method.Post);
request.AddJsonBody(new
{
evolution_params = evolutionParams ?? new EvolutionParams(),
performance_targets = performanceTargets ?? new PerformanceTargets()
});
var response = await _client.ExecuteAsync<NeuralEvolutionResponse>(request);
if (!response.IsSuccessful)
throw new Exception($"API Error: {response.ErrorMessage}");
return response.Data;
}
// Quantum Prediction
public async Task<QuantumPredictionResponse> QuantumPredictAsync(
QuantumState inputState,
int predictionHorizon,
double confidenceThreshold = 0.8)
{
var request = CreateRequest("/api/quantum/predict", Method.Post);
request.AddJsonBody(new
{
input_state = inputState,
prediction_horizon = predictionHorizon,
confidence_threshold = confidenceThreshold,
use_entanglement = true
});
var response = await _client.ExecuteAsync<QuantumPredictionResponse>(request);
if (!response.IsSuccessful)
throw new Exception($"API Error: {response.ErrorMessage}");
return response.Data;
}
// AGI Knowledge Query
public async Task<KnowledgeQueryResponse> QueryKnowledgeAsync(
string query,
List<string> context = null,
int maxResults = 10)
{
var request = CreateRequest("/api/agi/knowledge/query", Method.Post);
request.AddJsonBody(new
{
query = query,
context = context ?? new List<string>(),
max_results = maxResults,
include_reasoning = true
});
var response = await _client.ExecuteAsync<KnowledgeQueryResponse>(request);
if (!response.IsSuccessful)
throw new Exception($"API Error: {response.ErrorMessage}");
return response.Data;
}
}
// Data Models
public class CompressionResponse
{
public string Id { get; set; }
public string CompressedData { get; set; }
public int OriginalSize { get; set; }
public int CompressedSize { get; set; }
public double CompressionRatio { get; set; }
public string PrivacyLevel { get; set; }
public Dictionary<string, object> Proof { get; set; }
}
public class CompressedData
{
public string Id { get; set; }
public string CompressedData { get; set; }
public Dictionary<string, object> Proof { get; set; }
}
public class DecompressionResponse
{
public string Data { get; set; }
public bool Verified { get; set; }
public int OriginalSize { get; set; }
}
public class ContextExtractionResponse
{
public Dictionary<string, object> Contexts { get; set; }
public List<CrownJewel> CrownJewels { get; set; }
public double ProcessingTimeMs { get; set; }
}
public class CrownJewel
{
public string Type { get; set; }
public string Value { get; set; }
public double Confidence { get; set; }
}
public class EvolutionParams
{
public double MutationRate { get; set; } = 0.1;
public double CrossoverRate { get; set; } = 0.7;
public double SelectionPressure { get; set; } = 2.0;
}
public class PerformanceTargets
{
public double? MinAccuracy { get; set; }
public int? MaxLatencyMs { get; set; }
public int? MaxMemoryMb { get; set; }
}
public class NeuralEvolutionResponse
{
public string EvolutionId { get; set; }
public int Generation { get; set; }
public double FitnessScore { get; set; }
public List<TopologyChange> TopologyChanges { get; set; }
}
public class TopologyChange
{
public string Type { get; set; }
public Dictionary<string, object> Details { get; set; }
}
public class QuantumState
{
public double[] Vector { get; set; }
public Dictionary<string, double> Metadata { get; set; }
}
public class QuantumPredictionResponse
{
public List<QuantumPrediction> Predictions { get; set; }
public double QuantumFidelity { get; set; }
public double DecoherenceFactor { get; set; }
public double EntanglementScore { get; set; }
}
public class QuantumPrediction
{
public DateTime Timestamp { get; set; }
public QuantumState State { get; set; }
public double Probability { get; set; }
public double Confidence { get; set; }
}
public class KnowledgeQueryResponse
{
public List<KnowledgeResult> Results { get; set; }
public QueryUnderstanding QueryUnderstanding { get; set; }
}
public class KnowledgeResult
{
public string Concept { get; set; }
public double Relevance { get; set; }
public List<string> Connections { get; set; }
public string Reasoning { get; set; }
}
public class QueryUnderstanding
{
public string Intent { get; set; }
public List<string> Entities { get; set; }
public double Confidence { get; set; }
}
// Example Usage
class Program
{
static async Task Main(string[] args)
{
var client = new KindlyApiClient(Environment.GetEnvironmentVariable("KINDLY_API_KEY"));
try
{
// Example 1: Zero-Knowledge Compression
Console.WriteLine("=== Zero-Knowledge Compression ===");
var data = System.Text.Encoding.UTF8.GetBytes("Sensitive corporate data");
var compressed = await client.CompressDataAsync(data, "confidential");
Console.WriteLine($"Compression ratio: {compressed.CompressionRatio:P}");
Console.WriteLine($"Space saved: {(1 - compressed.CompressionRatio):P}");
// Example 2: Context Extraction
Console.WriteLine("\n=== Context Extraction ===");
var context = await client.ExtractContextAsync(
"The API gateway is experiencing timeout errors during database queries"
);
Console.WriteLine($"Processing time: {context.ProcessingTimeMs}ms");
if (context.CrownJewels?.Count > 0)
{
Console.WriteLine($"Crown jewel found: {context.CrownJewels[0].Type}");
}
// Example 3: Quantum Prediction
Console.WriteLine("\n=== Quantum Prediction ===");
var quantumState = new QuantumState
{
Vector = new[] { 0.707, 0.0, 0.707 },
Metadata = new Dictionary<string, double> { { "temperature", 0.1 } }
};
var predictions = await client.QuantumPredictAsync(quantumState, 5);
Console.WriteLine($"Quantum fidelity: {predictions.QuantumFidelity:F3}");
Console.WriteLine($"Predictions generated: {predictions.Predictions.Count}");
// Example 4: Knowledge Query
Console.WriteLine("\n=== AGI Knowledge Query ===");
var knowledge = await client.QueryKnowledgeAsync(
"How can I improve API performance?",
new List<string> { "performance", "optimization" }
);
var topResult = knowledge.Results[0];
Console.WriteLine($"Top concept: {topResult.Concept}");
Console.WriteLine($"Relevance: {topResult.Relevance:P}");
Console.WriteLine($"Reasoning: {topResult.Reasoning}");
}
catch (Exception ex)
{
Console.WriteLine($"Error: {ex.Message}");
}
}
}
}
Common Use Cases¶
1. Secure Data Storage with Zero-Knowledge Compression¶
# Store user data with maximum privacy
def store_user_data(user_id: str, sensitive_data: dict):
# Serialize and compress with top-secret privacy
data_bytes = json.dumps(sensitive_data).encode()
compressed = api.compress_data(data_bytes, "top_secret")
# Store only the compressed ID and proof
db.store_user_data(user_id, {
"compressed_id": compressed["id"],
"proof": compressed["proof"],
"timestamp": datetime.utcnow()
})
# Original data never touches the database
return compressed["id"]
# Retrieve and verify
def get_user_data(user_id: str):
stored = db.get_user_data(user_id)
# Decompress with proof verification
decompressed = api.decompress_data(stored["compressed_id"])
if decompressed["verified"]:
return json.loads(decompressed["data"])
else:
raise SecurityError("Proof verification failed")
2. Real-Time Anomaly Detection with Quantum Prediction¶
// Monitor system metrics with quantum prediction
async function monitorSystemHealth() {
const metrics = collectSystemMetrics();
// Convert to quantum state
const quantumState = {
vector: normalizeMetrics(metrics),
metadata: {
temperature: 0.1,
coherence: 0.95
}
};
// Get predictions for next 10 time steps
const predictions = await api.quantumPredict(quantumState, 10);
// Check for anomalies
for (const prediction of predictions.predictions) {
if (prediction.confidence > 0.8 && isAnomalous(prediction.state)) {
await alertOps({
severity: 'high',
probability: prediction.probability,
predictedTime: prediction.timestamp,
anomalyType: classifyAnomaly(prediction.state)
});
}
}
}
3. Intelligent Support Ticket Routing with Context Extraction¶
# Route support tickets based on seven-level context
def route_support_ticket(ticket_content)
# Extract all context levels
context = @api.extract_context(ticket_content)
# Analyze immediate context for urgency
immediate = context['contexts']['level1_immediate']
urgent_keywords = ['down', 'failed', 'emergency', 'critical']
is_urgent = immediate['entities'].any? { |e| urgent_keywords.include?(e.downcase) }
# Check system context for affected components
system = context['contexts']['level3_system']
affected_systems = system['system_boundaries'] || []
# Check business context for impact
business = context['contexts']['level6_business']
affected_stakeholders = business['stakeholders'] || []
# Route based on analysis
routing_decision = {
priority: is_urgent ? 'P1' : 'P2',
team: determine_team(affected_systems),
escalation_needed: affected_stakeholders.include?('executives'),
crown_jewels: context['crown_jewels']
}
# Create ticket with enriched context
create_enriched_ticket(ticket_content, routing_decision, context)
end
4. Adaptive Neural Architecture for Personalization¶
// Evolve neural topology based on user behavior
func PersonalizeUserExperience(userID string, behaviorData []float64) error {
// Get current neural topology for user
topology, err := getUserTopology(userID)
if err != nil {
// Create new topology
topology = createDefaultTopology()
}
// Transform behavior data
result, err := client.NeuralTransform(ctx, behaviorData, true)
if err != nil {
return err
}
// If performance is poor, trigger evolution
if result.QuantumEfficiency < 0.7 {
evolutionParams := EvolutionParams{
MutationRate: 0.15,
CrossoverRate: 0.8,
SelectionPressure: 2.5,
}
performanceTargets := PerformanceTargets{
MinAccuracy: 0.9,
MaxLatencyMs: 50,
}
evolution, err := client.EvolveNeuralTopology(ctx, evolutionParams, performanceTargets)
if err != nil {
return err
}
// Store evolved topology
saveUserTopology(userID, evolution.EvolutionID)
}
return nil
}
5. Privacy-Preserving Analytics with Homomorphic Operations¶
# Aggregate sensitive data without decryption
async def privacy_preserving_analytics(user_data_list):
# Compress each user's data separately
compressed_data = []
for user_data in user_data_list:
compressed = await api.compress_data(
json.dumps(user_data).encode(),
"top_secret"
)
compressed_data.append(compressed)
# Perform homomorphic addition on compressed values
total = compressed_data[0]
for data in compressed_data[1:]:
result = await api.homomorphic_add(total, data)
total = result["result"]
# The total is still encrypted/compressed
# Only authorized parties can decrypt
return {
"encrypted_total": total,
"count": len(user_data_list),
"proof_of_computation": result["proof"]
}
Advanced Patterns¶
1. Quantum-Classical Hybrid Processing¶
class HybridProcessor {
async process(data: any[]): Promise<ProcessingResult> {
// Try quantum processing first
try {
const quantumResult = await this.quantumProcess(data);
if (quantumResult.confidence > 0.9) {
return quantumResult;
}
} catch (error) {
if (error.code === 'QUANTUM_DECOHERENCE') {
console.log('Quantum system unavailable, falling back to classical');
}
}
// Fall back to classical with quantum hints
const classicalResult = await this.classicalProcess(data);
// Combine results if quantum partially succeeded
if (quantumResult && quantumResult.confidence > 0.5) {
return this.combineResults(quantumResult, classicalResult);
}
return classicalResult;
}
}
2. Consciousness-Aware Request Handling¶
# Adjust processing based on AGI consciousness state
class ConsciousnessAwareProcessor
def process_request(request)
# Check consciousness state
consciousness = @api.get_consciousness_state
# Adjust processing strategy
if consciousness['awareness_level'] > 0.8
# High awareness - use advanced reasoning
result = process_with_meta_cognition(request)
elsif consciousness['awareness_level'] > 0.5
# Medium awareness - standard processing
result = standard_process(request)
else
# Low awareness - simple heuristics
result = heuristic_process(request)
end
# Log consciousness metrics
log_consciousness_interaction(consciousness, request, result)
result
end
private
def process_with_meta_cognition(request)
# Use meta-cognitive analysis
thought_stream = generate_thought_stream(request)
analysis = @api.analyze_meta_cognitive(thought_stream, 'deep')
# Apply insights from analysis
apply_cognitive_insights(request, analysis)
end
end
3. Distributed Quantum Entanglement¶
// Create entangled data streams across services
type DistributedQuantumSystem struct {
client *KindlyClient
nodes []string
}
func (dqs *DistributedQuantumSystem) EntangleServices(ctx context.Context) error {
// Collect data streams from all nodes
streams := make([]DataStream, 0, len(dqs.nodes))
for _, node := range dqs.nodes {
stream := DataStream{
ID: fmt.Sprintf("node_%s", node),
Data: collectNodeData(node),
}
streams = append(streams, stream)
}
// Create quantum entanglement
entanglement, err := dqs.client.CreateEntanglement(ctx, streams, "cluster")
if err != nil {
return fmt.Errorf("entanglement failed: %w", err)
}
// Distribute entanglement information
for _, node := range dqs.nodes {
err := notifyNode(node, entanglement)
if err != nil {
return fmt.Errorf("notify node %s: %w", node, err)
}
}
return nil
}
Performance Optimization¶
1. Connection Pooling¶
# Reuse connections for better performance
from concurrent.futures import ThreadPoolExecutor
import requests
class OptimizedKindlyClient:
def __init__(self, api_key, max_connections=10):
self.api_key = api_key
self.session = requests.Session()
self.session.headers.update({
'X-API-Key': api_key,
'Content-Type': 'application/json'
})
# Connection pooling
adapter = requests.adapters.HTTPAdapter(
pool_connections=max_connections,
pool_maxsize=max_connections,
max_retries=3
)
self.session.mount('https://', adapter)
self.executor = ThreadPoolExecutor(max_workers=max_connections)
async def batch_compress(self, data_list):
# Parallel compression
futures = []
for data in data_list:
future = self.executor.submit(self._compress_single, data)
futures.append(future)
results = []
for future in futures:
results.append(future.result())
return results
2. Caching Strategies¶
class CachedKindlyClient {
constructor(apiKey, cacheOptions = {}) {
this.client = new KindlyAPIClient(apiKey);
this.cache = new Map();
this.cacheOptions = {
ttl: 300000, // 5 minutes
maxSize: 1000,
...cacheOptions
};
}
async getCachedOrFetch(key, fetchFn) {
// Check cache
const cached = this.cache.get(key);
if (cached && Date.now() - cached.timestamp < this.cacheOptions.ttl) {
return cached.data;
}
// Fetch and cache
const data = await fetchFn();
this.cache.set(key, {
data,
timestamp: Date.now()
});
// Enforce size limit
if (this.cache.size > this.cacheOptions.maxSize) {
const firstKey = this.cache.keys().next().value;
this.cache.delete(firstKey);
}
return data;
}
async getQuantumState() {
return this.getCachedOrFetch('quantum_state',
() => this.client.getQuantumState()
);
}
}
3. Batch Processing¶
# Process multiple items efficiently
class BatchProcessor
def initialize(client, batch_size = 100)
@client = client
@batch_size = batch_size
end
def process_large_dataset(items)
results = []
items.each_slice(@batch_size) do |batch|
# Process batch in parallel
batch_results = Parallel.map(batch, in_threads: 10) do |item|
process_item(item)
end
results.concat(batch_results)
# Respect rate limits
sleep(0.1)
end
results
end
private
def process_item(item)
# Extract context
context = @client.extract_context(item[:content])
# Compress if needed
if item[:size] > 1024 * 1024 # 1MB
compressed = @client.compress_data(item[:content])
item[:compressed_id] = compressed['id']
end
{
id: item[:id],
context: context,
compressed: item[:compressed_id]
}
end
end
Security Best Practices¶
1. API Key Management¶
# Secure API key handling
import os
from cryptography.fernet import Fernet
class SecureAPIKeyManager:
def __init__(self):
# Never hardcode keys
self.encryption_key = os.environ.get('ENCRYPTION_KEY')
if not self.encryption_key:
raise ValueError("ENCRYPTION_KEY environment variable not set")
self.fernet = Fernet(self.encryption_key.encode())
def store_api_key(self, user_id: str, api_key: str):
# Encrypt before storing
encrypted_key = self.fernet.encrypt(api_key.encode())
# Store in secure database
secure_storage.store(user_id, encrypted_key)
def get_api_key(self, user_id: str) -> str:
# Retrieve and decrypt
encrypted_key = secure_storage.get(user_id)
return self.fernet.decrypt(encrypted_key).decode()
def rotate_api_key(self, user_id: str):
# Generate new key
new_key = generate_api_key()
# Update in API
client = KindlyAPIClient(self.get_api_key(user_id))
client.rotate_key(new_key)
# Store new key
self.store_api_key(user_id, new_key)
2. Request Signing¶
// Sign requests for additional security
const crypto = require('crypto');
class SecureKindlyClient extends KindlyAPIClient {
constructor(apiKey, apiSecret) {
super(apiKey);
this.apiSecret = apiSecret;
}
signRequest(method, path, body) {
const timestamp = Date.now();
const nonce = crypto.randomBytes(16).toString('hex');
// Create signature
const message = `${method}${path}${timestamp}${nonce}${JSON.stringify(body)}`;
const signature = crypto
.createHmac('sha256', this.apiSecret)
.update(message)
.digest('hex');
return {
'X-Timestamp': timestamp,
'X-Nonce': nonce,
'X-Signature': signature
};
}
async makeRequest(method, path, body) {
const headers = {
...this.headers,
...this.signRequest(method, path, body)
};
return super.makeRequest(method, path, body, headers);
}
}
3. Audit Logging¶
// Log all API interactions for security audit
type AuditLogger struct {
client *KindlyClient
logger *log.Logger
}
func (al *AuditLogger) LoggedRequest(ctx context.Context, operation string, data interface{}) (interface{}, error) {
start := time.Now()
// Log request
al.logger.Printf("API_REQUEST: operation=%s user=%s timestamp=%s",
operation, getUserID(ctx), start.Format(time.RFC3339))
// Make request
result, err := al.performOperation(ctx, operation, data)
// Log response
duration := time.Since(start)
if err != nil {
al.logger.Printf("API_ERROR: operation=%s duration=%v error=%v",
operation, duration, err)
} else {
al.logger.Printf("API_SUCCESS: operation=%s duration=%v",
operation, duration)
}
// Store in audit database
al.storeAuditRecord(AuditRecord{
UserID: getUserID(ctx),
Operation: operation,
Timestamp: start,
Duration: duration,
Success: err == nil,
Error: err,
})
return result, err
}
4. Data Privacy Compliance¶
# Ensure GDPR/CCPA compliance
class PrivacyCompliantClient
def initialize(api_client)
@api = api_client
end
# Right to erasure (GDPR Article 17)
def delete_user_data(user_id, confirmation_token)
# Verify deletion request
unless verify_deletion_token(user_id, confirmation_token)
raise "Invalid deletion token"
end
# Get all user data references
data_refs = get_user_data_references(user_id)
# Delete compressed data
data_refs[:compressed_ids].each do |compressed_id|
@api.delete_compressed_data(compressed_id)
end
# Log deletion for compliance
log_data_deletion(user_id, data_refs)
# Return deletion certificate
generate_deletion_certificate(user_id)
end
# Right to data portability (GDPR Article 20)
def export_user_data(user_id)
data = {}
# Collect all user data
data[:profile] = get_user_profile(user_id)
data[:compressed_data] = get_user_compressed_data(user_id)
data[:predictions] = get_user_predictions(user_id)
data[:contexts] = get_user_contexts(user_id)
# Format as machine-readable
{
format_version: "1.0",
export_date: Time.now.iso8601,
user_id: user_id,
data: data
}
end
end
Conclusion¶
The Kindly API provides powerful AI capabilities through a simple, secure interface. Whether you're building privacy-preserving applications with zero-knowledge compression, implementing quantum-powered predictions, or leveraging AGI infrastructure, these guides and examples will help you get started quickly.
For more information: - API Reference: API_REFERENCE.md - OpenAPI Specification: openapi.yaml - Authentication Guide: AUTHENTICATION_GUIDE.md - Rate Limiting Guide: RATE_LIMITING_GUIDE.md
Happy coding with Kindly API!